
Princeton Univ. F‘22 COS 521: Advanced Algorithm Design

Lecture 9: Approximate Counting

Lecturer: Huacheng Yu Last updated: October 12, 2022

In streaming algorithms, we study how to “process large data using small space.” In
this lecture, the most important parameter of an algorithm is its memory usage. Streaming
algorithms are applicable to many situations where the input data is presented to the
algorithm sequentially, while the algorithm does not have enough space to store the whole
input. Therefore, we must process the data as they arrive, while maintaining a small-sized
data structure in memory.

The input to a streaming algorithm is a stream (a1, . . . , an) of items, and the algorithm
can only access the stream in order. There are many different problems that can be solved
in this model using small space. Today, we will study one of the most basic question in
stream – count the number of items in the stream approximately.

More formally, we wish to maintain a counter n, initialized to 0, supporting two opera-
tions:

• inc(): set n← n+ 1 (promised that n never exceeds N)

• query(): return an approximation ñ = (1± ε)n with probability at least 1− δ

The trivial algorithm, which maintains n exactly, uses O(logN) bits of space. Here, we are
interested in understanding if insisting on using much smaller memory, whether we can still
obtain a very close approximation with high probability.

1 The “offline” question

Let us first consider an easier version of the problem: Given an integer n ∈ [N], encode n
using≪ logN bits such that from the encoding one can recover an ñ ∈ [n/2, 2n]. This is an
easier question, because if we have an approximate counter using S bits of space, then by
doing n inc() operations, we obtain a memory state of S bits, from which we can recover
an ñ ≈ n. Thus, this memory state can be viewed as a succinct encoding of n.

For this easier question, the idea is to use one encoding to represent an interval of
values. One such strategy is to note that if we round n to a power of two, then this is a
2-approximation. Suppose 2X ≤ n < 2X+1, then by using the value of X as the encoding,
and returning ñ = 2X , we obtain the desired succinct encoding that uses only O(log logN)
bits.

2 The update algorithm

We will maintain such anX in memory, and the remaining question is how to updateX when
we increment n. First observe that X represents that the counter value is approximately
ñ = 2X . As we increase n, we need to increment X at some point. When we increment X
to X + 1, the counter value it reprsents becomes 2X+1, i.e., suddenly it is increased by 2X .

1

2

The idea of the update algorithm is to increase X with probability 2−X to offset this
difference. For simplicity of notations when n = 0, in the actual algorithm, we will in fact
think X represents ñ = 2X − 1. The full algorithm is shown below.

Init()
1. set X ← 0
Inc()
1. set X ← X + 1 with probability 2−X ; do nothing otherwise
Query()
1. return ñ = 2X − 1
The analysis of the algorithm has two steps: we first prove that the output has the

correct expectation, then show that its variance is bounded. Let Xn be the random variable
denoting the value of X after n inc().

Claim 1. We have E[2Xn − 1] = n.

Proof. We first have X0 = 0, i.e., E[2X0 − 1] = 0.
Then for general n > 0, we have

E[2Xn − 1] =
∑
x

Pr[Xn = x] · (2x − 1)

=
∑
x

(Pr[Xn−1 = x] · (1− 2−x) + Pr[Xn−1 = x− 1] · 2−(x−1)) · (2x − 1)

=
∑
x

Pr[Xn−1 = x] · (2x − 2 + 2−x) +
∑
x

Pr[Xn−1 = x− 1] · (2− 2−x+1)

=
∑
x

Pr[Xn−1 = x] · (2x − 2 + 2−x) +
∑
x

Pr[Xn−1 = x] · (2− 2−x)

= E[2Xn−1 − 1] + 1,

which is equal to n by induction.

Next, we bound its variance.

Claim 2. We have Var[2Xn − 1] ≤ O(n2).

Proof. We have Var[2Xn − 1] = Var[2Xn] = E[4Xn]− (E[2Xn])2. The previous claim proved

3

that E[2Xn] = n+ 1. Now we calculate E[4Xn]. First we have 4X0 = 1. For n > 0, we have

E[4Xn] =
∑
x

Pr[Xn = x] · 4x

=
∑
x

(Pr[Xn−1 = x] · (1− 2−x) + Pr[Xn−1 = x− 1] · 2−(x−1)) · 4x

=
∑
x

Pr[Xn−1 = x] · (4x − 2x) +
∑
x

Pr[Xn−1 = x− 1] · 2x+1

=
∑
x

Pr[Xn−1 = x] · (4x − 2x) +
∑
x

Pr[Xn−1 = x] · 2x+2

=
∑
x

Pr[Xn−1 = x] · (4x + 3 · 2x)

= E[4Xn−1] + 3 · E[2Xn−1]

= E[4Xn−1] + 3n

= E[4X0] + 3(n+ · · ·+ 1)

=
3

2
n2 +

3

2
n+ 1.

Thus, Var[2Xn − 1] ≤ O(n2).

By Chebyshev’s inequality, we obtain that

Pr[|ñ− n| ≥ T] ≤ O

(
n2

T 2

)
.

That is, for T = C · n for large constant C, ñ is at most O(n) with probability 0.9.

3 Reducing the variance

The output of the above algorithm has the right expectation, but its variance is too large
to give an (1±ε)-approximation. To reduce the variance, we can take multiple independent
copies and output their average.

Formally, we maintain s independent copies of the algorithm (for some parameter s):
each time we need to increment n, we independently run inc() for each copy; when it is
queried, we query each copy and output ñ equal to the average value of 2X − 1. Let X(i)

be the value of X in the i-th copy. Then we have

E

[
1

s

s∑
i=1

(
2X

(i) − 1
)]

= n.

Its variance is

Var

[
1

s

s∑
i=1

(
2X

(i) − 1
)]

=
1

s2
Var

[
s∑

i=1

(
2X

(i) − 1
)]

=
1

s
·Var[2X(1) − 1]

= O(n2/s).

4

Therefore, Chebyshev’s inequality gives

Pr[|ñ− n| ≥ T] ≤ O

(
n2

sT 2

)
.

By setting s = O(ε−2 · δ−1), for T = εn, we have

Pr[ñ = (1± ε)n] > 1− δ.

That is, the space usage of the algorithm is O(s · log logN) = O(ε−2 · δ−1 · log logN). This
is O(log logN) for constant ε and δ.

4 Median of Means

One common strategy to improve the dependence on the failure probability δ is to use
“median-of-means”. That is, we maintain s1 · s2 copies of the algorithm, which are divided
into s1 groups of size s2. Denote by X(i,j) the value of X in j-th copy in group i, and ñi,j =

2X
(i,j) − 1 be its output. When it is queried, we first compute the average of each group:

ñi =
1
s2

∑s2
j=1 ñi,j . Then we output the median of the averages: ñ = median(ñ1, . . . , ñs1).

When s2 is set to C · ε−2 for a sufficiently large constant C, the argument from the
previous section gives that

Pr[ñi = (1± ε)n] > 3/4,

for each i. To see what is the probability that their median is also a (1± ε)-approximation,
observe that

• the median is larger than (1 + ε)n, if and only if
• there are at least s1/2 averages ñi that are larger than (1 + ε)n.

However, for each ñi, this happens with probability at most 1/4. This allows us to apply
Chernoff bound: Let Yi indicate if ñi > (1 + ε)n, then Pr[Yi = 1] < 1/4, and all Yi
are independent. Chernoff bound implies that Pr[

∑
i Yi ≥ s1/2] < exp(−Θ(s1)), i.e., the

median is larger than (1 + ε)n with probability at most exp(−Θ(s1)). Similarly, we can
obtain the same bound on the probability that the median is smaller than (1− ε)n.

By setting s1 = C log(1/δ) for a sufficiently large constant C, this implies that

Pr[ñ = (1± ε)n] > 1− δ.

Now the total number of copies we maintain is only O(ε−2 log(1/δ)). That is, we use space
O(ε−2 log(1/δ) log logN) bits.

5 Morris Counter

The Morris counter is similar to the algorithm we saw above. It has a parameter α ∈ (0, 1)
such that X is set to X+1 with probability (1+α)−X , and outputs ñ =

(
(1 + α)X − 1

)
/α.

We will prove in the problem set that a single Morris counter achieves space O(log(1/ε) +
log logN + log log(1/δ)) by choosing the right parameter α.

	The ``offline'' question
	The update algorithm
	Reducing the variance
	Median of Means
	Morris Counter

